The manufacturing stage of wind turbines includes the construction of the foundation, tower, nacelle, hub, rotor blades, and the transportation and production process of the wind turbine components. Turbine manufacturing requires large quantities of materials, such as concrete and metals like steel, cast iron, stainless steel, aluminium, and copper. For this reason, turbine manufacturing has the largest environmental impact across all considered impact categories and indicators. The manufacturing of substations, maintenance (including spare parts), transportation and logistics play a less significant role. Installation and dismantling also have a small contribution. In the baseline scenario, end-of-life credits were given for recycled materials, significantly impacting the overall results. The largest credits were given for metals.
Relevant parameters for the considered wind energy systems are as follows:
- Type and quantity of materials used in the wind turbine and cables, particularly metals.
- Recycling rates of the metals and selected allocation method at the end of life.
- Electricity yield over the lifetime of the wind energy system.
The study shows that the environmental impacts of wind energy systems have improved in recent years. Since the focus of the study was on market-ready technologies, the results could be classified in the lower end of the range of outcomes for existing LCAs of wind energy systems.
Sensitivity and scenario analyses were performed on several parameters. Water depth (for offshore systems) and turbine foundation and tower construction (for onshore systems) were considered, as well as cable length, lifetime and full load hours, and end-of-life allocation for all system types. The range of results for the considered environmental impact categories was calculated based on the analyses performed. Compared to the baseline scenario, the results vary between -51 % and +61 %, depending on the location and the impact category. The large ranges of results show that the uncertainties in the results are significant.
The calculated energy payback time of the wind energy systems under consideration is strongly affected by the system- and site-specific factors. The results show that the primary energy used over the life cycle of the investigated systems can be recovered as generated wind electricity after six months to one year of system operation.
The results demonstrate that wind turbine technologies for electricity generation have developed considerably in recent years. The resource input is more efficient, and the electricity yield has increased while the environmental impacts of electricity generation have significantly reduced compared to older LCA studies. The environmental profile of modern wind energy systems is strongly dependent on the parameters of the use phase, especially the individual location with its wind speed and the project lifetime. Long system lifetimes are preferable to maximize the electricity yield of the systems. Considering the dynamic market and technology developments in wind energy systems, it seems helpful to update the body of LCA work at regular intervals and collect additional data on new technologies and production sites.
The full study, inclusive of an LCA of photovoltaic energy systems, conducted by Fraunhofer Institute for Building Physics (IBP), can be downloaded here (in German, abstract and summary in English).